Reduction from Cost-Sensitive Multiclass Classification to One-versus-One Binary Classification

نویسنده

  • Hsuan-Tien Lin
چکیده

Many real-world applications require varying costs for different types of mis-classification errors. Such a cost-sensitive classification setup can be very different from the regular classification one, especially in the multiclass case. Thus, traditional meta-algorithms for regular multiclass classification, such as the popular one-versus-one approach, may not always work well under the cost-sensitive classification setup. In this paper, we extend the one-versus-one approach to the field of cost-sensitive classification. The extension is derived using a rigorous mathematical tool called the cost-transformation technique, and takes the original one-versus-one as a special case. Experimental results demonstrate that the proposed approach can achieve better performance in many cost-sensitive classification scenarios when compared with the original one-versus-one as well as existing cost-sensitive classification algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Cost-sensitive Multiclass Classification Algorithm Using One-versus-one Comparisons

Many real-world applications require varying costs for different types of misclassification errors. Such a cost-sensitive classification setup can be very different from the regular classification one, especially in the multiclass case. Thus, traditional meta-algorithms for regular multiclass classification, such as the popular one-versus-one approach, may not always work well under the cost-se...

متن کامل

Multiclass Approaches for Support Vector Machine Based Land Cover Classification

SVMs were initially developed to perform binary classification; though, applications of binary classification are very limited. Most of the practical applications involve multiclass classification, especially in remote sensing land cover classification. A number of methods have been proposed to implement SVMs to produce multiclass classification. A number of methods to generate multiclass SVMs ...

متن کامل

Weighted One-Against-All

The one-against-all reduction from multiclass classification to binary classification is a standard technique used to solve multiclass problems with binary classifiers. We show that modifying this technique in order to optimize its error transformation properties results in a superior technique, both experimentally and theoretically. This algorithm can also be used to solve a more general class...

متن کامل

One-sided Support Vector Regression for Multiclass Cost-sensitive Classification

We propose a novel approach that reduces cost-sensitive classification to one-sided regression. The approach stores the cost information in the regression labels and encodes the minimum-cost prediction with the onesided loss. The simple approach is accompanied by a solid theoretical guarantee of error transformation, and can be used to cast any one-sided regression method as a costsensitive cla...

متن کامل

Sensitive Error Correcting Output Codes

We present a reduction from cost sensitive classi cation to binary classi cation based on (a modi cation of) error correcting output codes. The reduction satis es the property that regret for binary classi cation implies l2-regret of at most 2 for cost-estimation. This has several implications: 1) Any regret-minimizing online algorithm for 0/1 loss is (via the reduction) a regret-minimizing onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014